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INTRODUCTION

The smoothing of gradients can be obtained by using an optimization method
for approximation involving spline functions. A nonuniform grid may be employed
to compute by the spline function method with cubic hermite polynomials.
Continuous second derivatives at the grid point from both sides are essential
for the purpose of smoothing. This method can be applied to solve the following
problems: whether the platform can climb on the estimated in-path slope or

whether it will tip over the estimated cross-path slope.

RECURSIVE FILTERING AND SMOOTHING PROCEDURE
A spline function s(§) is a solution to the optimization problem
N - N Bj -
J* = Min. (T [h(Bi)-mi1TRy [h(Bi)-mi]l +p I [ [h12d¢} (1)
hecz i=1 i=2 Bi-1

where for clarity and simplicity in discussion, we only consider the cubic
spline case. A higher order polynomial spline can also be treated in a similar
manner with more complicated computations.

A cubic spline, s, is a piecewise polynomial of class C2 which has many
good properties, such as the minimum norm property and local base property (refs
1,2). From the approximation theory, we know that for each set A = {al,...,aN,
a'y, a'N], there exists a unique cubic spline s(§;A) such that

s(Bq;A) = a; , i=1,2,...,N (2)
s(Bi:A) = a'y, i=1,N (3)

where s is the first derivative of the function s. The above equations can be

1Ah1berg, J. H., Nilson, E. N., and Walsh, J. L., The Theory of Splines and
Their Applications, Academic Press, Inc., 1967.
2schumaker, L. L., Spline Functions: Basic Theory, John Wiley & Sons, 1981.
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thought of as boundary conditions for the piecewise cubic spline interpolation
given a set of data (B8;,a;), for i = 1,2,...,N. Thus, solving the problem in

Eq. (1) is equivalent to determining a set of constraints A for the optimization

problem:
N - N B; .
J* = Min { L [s(&;A)-mj]1TR; [s(&i:A)-m5] +p £ [ [s(&:A)12dE}  (4)
A i=1 j=2 Bi-1

Instead of taking a direct approach to find an optimal set of constraints for
the problem above, it is proposed to further transform this problem into a form
which is convenient to be solved. From the theory of numerical analysis (ref
3), it is well known that a piecewise cubic Hermite polynomial p(&) is in the
family of C'. For each set B = AuAC, where AC is a complement of A, i.e., AC =
{a';, i = 2,3,...,N-1}, then B = {aj,a"';, i=1,2,...,N}, there exists a unique
piecewise cubic Hermite polynomial p(&;A) such that

p(Bi:B) =a; , i=1,2,...,N (5)

P(Bi:B) = a's , j=2,..,N (6)
where b is the first derivative of p.

It should also be noted that for each set A, there are an infinite number

of piecewise Hermite polynomials p(£;A) such that

p(Bij;A) = a5 , i=1,2,...,N (1)

p(Bi;A) = a'; , i=1,N (8)

i.e.,
P = {p(&;A):(5),(6) satisfied} (9)

J8urden, R. L. et al., Numerical Analysis, Prindle, Weber, & Schmidt, 1978.

Let a set of p(f{;A) which satisfies the constraints in the equations above be P, i
§
b




Referring to the paper by de Boor (ref 4), it is noted that there exists a
unique cubic spline s(§;A) in the set P. Also from the minimum norm property of

a cubic spline, we have the following relation:

N B - N By .
t J [s(§:A)]12 € T [ [p(&:A)]2 (9)
j=2 Bi-1 i=2 Bi-1
That is
N B; . ’
LS [s(£:A)]2 = inf  Jp(p) (10)
j=2 Bi-1 peP
where
N Bj .
Jp= Lf [p(&;:A)]2 (11)
i=2 Bi-1

Since a cubic spline s(§;A) is unique, a piecewise cubic Hermite polynomial
p(&:A) which minimizes the smoothing integral Jp in the above equation with
respect to AC becomes a cubic spline s(£;A). To be more precise, we have the
following theorem.
THEOREM: Let P represent a set of piecewise cubic Hermite polynomials p
which satisfies the constraints below: )
p(B;:A€) =a; , i=1,2,...N (12)
6(ﬂi;A°) =a'y , 1i=1,N (13)
where p € C', A, and AC are the same as mentioned before. Then there exists a

unique cubic spline s(§) such that

N B . N B; "
t J [s(§))2d§ = Min T [ [p(&,AC)]2d¢ (14)
i=z2 Bi-1 AC  i=2 Bij-1

where s and p are the second derivatives of functions s and p and s € C2, A

simple example with N = 3 is given next.

%de Boor, C., "Bicubid Spline Interpolation," J. Math Phys., Vol. 41, 1962,
pp. 212-218.
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EXAMPLE FOR C* CONTINUITY
For convenience and simplicity, we only consider a special case with N = 3.
The node points are given as 81, f7, and S83. The intervals are not equal, i.e.,
(B2-B1) # (B3-82) (15)
Let a set of piecewise cubic Hermite polynomials p be
P = [p(t;A€) , p e C' [ty,t3], p(tz) = a, a € AC] (16)
which satisfies the constraints in the equations below:
p(t;;A€) = a5 , for i =1,2,3
p(t;;AC) = a'; , for i =1,3 (17)
In this special case, a set AC = a'y = a.
We want to show here that the cubic Hermite polynomial p(t;AC€), which is
obtained by minimizing the smoothing integral, will become a cubic spline func-

tion s(t) € C2[tq,t3]

to” . t3 .
J* = Min {[ = [p(t;A2)]2dt + [ [p(t;AC)]2dt}
AC 13 tz*
ty™ . t3 .
= Min {f [p(t;a)ledt + [~ [p(t;a))2dt} ) (18)
a t t2

From Eq. (Al14) of the Appendix, the smoothing integral above can be written as
J(a) = (xp-Agx1) 78] (xp-Agxq) + (x3-A2xp) By (x3-Agx2) (19)
where A;, B;1, and x; are defined in the Appendix, and
X; = (ai,a'i)T , wWitha'p=a , i=1,2,3 (20)

A.i_l = d1'_1 = ti't-i_l (21)

Using Eqs. (All) and (A12), the functional J(a) is written as




B aT - -
] i U NUr -3 -z—1 1T I
az 1 di|]ag 12d4 -6dq as 1 dq|]as
o 1]|a 6dy  4dp 0 1
a a4 ~-6dq 1 a a
b — e J . - b o . _J b J b -~
L - L —
- a7 -
r - ~ e N e - =i ~ i al
I T
as 1 dp|]az 12d; -6dy a3 1 da|lar
+ - -
-2 -1
a's 0 1}]|a -6do 4d,y a'sy 0 1 a
- - -

) -2
J(a) = 12d; (az-aj-dja'y)? - 12dy (ag-ay-dqa’q)(a-a'q)
+ 4d;‘ (a-a'1)2 + 12d;a (az~-az-dja)?
~12d;" (a3-ap-dpa)(a'3-a) + 4dy (a'z-a)?

Taking the partial derivative with respect to a yields
3J ~2 -1
5; = ‘12d1 (ag-aj-dia'q) + 8d; (a-a'q)

+ 24dy (a3-ag-da)(-dp) - 12d7 (-dp)(a'3-a)
-12d;" (-1)(a3-a-dqa) - 8d; (a'3-a) = 0
Solving the equation above for a, one obtains
a* = [3d; (az-ay)-dy a'1+3dy a3-dy 3ap-dy a'3l/[2(d; +dg )]
To show that p(t;a*)e C2[ty,t3], we only need to show that

Tim p(t;a*) = 1im p(t;a*)
t-ty~ t-ty*

(22)

(23)

(24)

(25)

» =W

p—y—r
e -

R
.




That is, for a piecewise cubic Hermite polynomial p,

;1,2(t2;a*) = ;2,3(t2;a*) (26)
where py 2 is the cubic Hermite polynomial within the interval g1 and B2, and
P2,3 is the cubic Hermite polynomial within the interval S, and B3.

Now from the definition of piecewise cubic Hermite polynomial in the
Appendix, we have
Py, 2(t;a%) = 6d] (aj-ag) + 2d; a'y + 47 a* (27)

By using Eq. (24), the above equation can be expressed as

By,2(tg;a%) = [-Bap(dy +dp ) + 6(ajdy +azdp) + 2(a’y-a'3)1/(dg+dy)  (28)
In a 1ike manner, omitting the detailed derivation, we obtain easily

P2,3(tp:a%) = [-6ap(dy +dp ) + 6(agdy +agdy) + 2(a'1-a'3)1/(dy+dy)  (29)
Thus, Eq. (26) is always true, that is, the conclusion in the theorem is valid.
It is proved that the C2 continuity exists in the optimiza;ion procedure for

piecewise cubic Hermite polynomials with unequal intervals.

CONCLUSION

For scanning in the direction of elevation angle from the top of a mast
where a laser is located, the intervals needed in angles are small for far away
targets, while the same are large for close-by objects. The smoothing algorithm

discussed in this report indicates that piecewise cubic Hermite polynomials can

be used for unequal intervals or nonuniform grids.
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APPENDIX
EVALUATION OF THE SMOOTHING INTEGRAL
A piecewise cubic Hermite polynomial in the interval ([B;-1,B87] is repre-
sented in terms of the basis functions and the state vectors x;, xj.i, where the
state vectors are defined as in Eq. (20). By changing the independent variable
below,
t = &-Bi-q (A1)
Then the smoothing integral in the interval ([85-.1,83] becomes
Aj-

1 .o
Li-g,i = o [pi-1,i(t)]%dt (A2)

where Aj_j = ti-tj.1 = Bi-Bi-1, Aj-1#44.
With the change of the variable above, the second derivative of the Hermite

polynomial can be written as

— ~— T
¢;,i(t)
i, 100 | | x  (A3)
Pi-1,i(t) =
¢i,o(t) Xi-1
@i,o(t) (A4)

where the second derivatives of the basis functions can be derived as follows.
Using the change of variables, we rewrite the basis functions as
$5,1(t) = t2(345-1-2t)/4i-1°
¥i,1(t) = t2(t-44-1)/84-1°
®5,0(t) = (A5-1-t)2(Bj-1+2%) /8517

Vi,o(t) = t(Aj-1-t)%48i-12 (AS) ’



Then, taking the second derivative with respect to t yields

$1,1(t) = 6(Aj-1-2t)/4i-1°

ai,l (6t-244-1)/44-1%

6(2t-4i-1)/84-1°

<
-de
o

L]

(6t-4A4-1)/84-12 (A6)

Jﬂ-:
o
n

Therefore, the integrand of the smoothing integral is expressed as

S
X3 X4
Ki-1,i(t) (AT)

[5i-1,i(t)]=

Xi-1 Xi-1

where Ki_q,6j is defined as

Ki-1,4(u) 4

¢i,1(u)¢;,1(u) e 5,1 (%5, 1) 4 &5,1(0)d5,0(0) , &5, 1), 0(H)
Wi, 10005, 1) . Wi, 10095, 1) . i, 10081, 001) 510 0k)

w:,o(u)w:,o(u)

-

01,0005, 1(1) . W1, 0lmWi, 1) , wi,0(m)oi,0lk)

¥i,olm)dsi,1(H) w1,o(u)w;,1(u) v Wi,0(m)eq,0(k) , Wi, 0(k)¥4,0(u)

; (A8)
" By utilizing the above equation, the smoothing integral becomes
xi X-,
85-1
; Ii-1,i = [ Ki-1,i(t)dt (A9)
: xi-1 | | © Xi-1

Evaluating the above integral, we obtain

n 3R - 3 0 yY AT XL e LN OO0
\it’ﬁ'iai’&’n"’l‘u'i‘.;"b,n.!ai."h’ﬂ..’n‘o‘ﬁ. m&»\“ \~A4‘.xl N RS\ M L f » Jp 'o,l‘g.l‘o,l'o.O'q.Oc.




Aj-

1
lo Kj-1,(t)dt =

- —

12/84-1°>  -6/Aj-1* -12/84-1° -6/4i-1°
-6/8i-1* 4/ 6/45-12 2/84-1
-12/85.1% 6/A5-1% 12/4A5-12 6/4-12

-6/A5-.12  2/Bj-1 6/A5-12 4/85-1 10)

-1
Matrices B;_.q and Aj_.q are defined as follows:

1 44
0o 1
[ -3 -2 7]
12451  -6Aj-q
-t
B‘i'l = -2 1 (A12)
-644-1 4443
-1
where B;_1 is a symmetric matrix. Equation (A10) can then be expressed as
-1 . |
Bi-1 -Bi-1A4-1
-1 T -
(-Bi-1Ai-1)T  Aj-1Bi-1Ai-y (A13)

-1
where B;_; and Aj.1 are functions of the variable Aj-1. By using the above

notation, Eq. (A9) is rewritten as

10

SN N SN

- e -

Py

o
B e




-1
X4 Bi-1 “Bi-1A4-1 X3
T -1 T -1
Xi-1 -Ai-1Bi-1 Ai-1Bi-1Ai-1 Xi-1
po— T o — e
T -1 T -
Xi-1 Aj-1Bi-1Ai-1 “Ai-1Bi-1 Xi-1
= -1 -1
X -Bi-1Ai-1 Bi-1 X

T -
Ci-1 = PAj-1Bi-1A4-1 (A16)

1

T -
Di-1 = -PAj-1Bj-1 (A17)

1

Ej-1 = pBi-g (A18)

Thus, the smoothing integral is transformed into the above quadratic form.
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INTRODUCTION

The smoothing of gradients can be obtained by using an optimization method
for approximation involving spline functions. A nonuniform grid may be employed
to compute by the spline function method with cubic hermite polynomials.
Continuous second derivatives at the grid point from both sides are essential
for the purpose of smoothing. This method can be applied to solve the following
problems: whether the platform can climb on the estimated in-path slope or

whether it will tip over the estimated cross-path slope.

RECURSIVE FILTERING AND SMOOTHING PROCEDURE
A spline function s(§) is a solution to the optimization problem
N - N By :
J* = Min.  { L [h(B;)-mi1TR; [h(Bj)-mi] +p L [ (h]2dE] (1)
hecCt iml i=2  Bi-1

where for clarity and simplicity in discussion, we ¢ 1. consider the cubic
spline case. A higher order polynomial spline can also be treated in a similar
manner with more complicated computations.

A cubic spline, s, is a piecewise polynomial of class C? which has many
good properties, such as the minimum norm property and local base property (refs
1,2). From the approximation theory, we know that for each set A = {al,...,aN,
a'y, a'Nl, there exists a unique cubic spline s(£;A) such that

s(Bj;A) =a; , i=1,2,,..,N (2)
S(Bi;A) = a'y, i = 1,N (3)

where s is the first derivative of the function s. The above equations can be

lahiberg, J. H., Nilson, E. N., and Walsh, J. L., The Theory of Splines and
Their Applications, Academic Press, Inc., 1967.
2schumaker, L. L., Spline Functions: Basic Theory, John Wiley & Sons, 1981.
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thought of as boundary conditions for the piecewise cubic spline interpolation
given a set of data (B;,a;), for i = 1,2,...,N. Thus, solving the problem in
Eq. (1) is equivalent to determining a set of constraints A for the optimization
probiem:

N

- N B
J* = Min { T [s(£5:A)-m31TR; [s(E5:A)-m) +p £
A i=1 i=2 Bi-1

[s(£:A)12d)  (4)
Instead of taking a direct approach to find an optimal set of constraints for
the problem above, it is proposed to further transform this problem into a form
which is convenient to be solved. From the theory of numerical analysis (ref
3), it is well known that a piecewise cubic Hermite polynomial p(&) is in the
family of C'. For each set B = AuA®, where AC is a complement of A, i.e., AC =
{a';, i = 2,3,...,N-1}, then B = {a;,a';, i=1,2,...,N}, there exists a unique
piecewise cubic Hermite polynomial p(§;A) such that

p(B;;B) = a; , i=1,2,...,N (5)

P(B:B) = a'i |, §=2,... N ()
where 5 is the first derivative of p.

It should also be noted that for each set A, there are an infinite number

of piecewise Hermite polynomials p(§;A) such that

p(Bi:A) = a; , i=1,2,...,N (1)

P(Bj:A) = a'y , i=1,N (8)
Let a set of p({;A) which satisfies the constraints in the equations above be P,

i.e.,
P = (p(&:A):(5),(6) satisfied) (Q)

JBurden, R. L. et al., Numerical Analysis, Prindle, Weber, & Schmidt, 1978.
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Referring to the paper by de Boor (ref 4), it is noted that there exists a
unique cubic spline s(§;A) in the set P. Also from the minimum norm property of
a cubic spline, we have the following relation:

N B N B

. . '
L [ [S(EA)I2dE € T [ @ [p(E:A)]2dE ."ﬁsﬁ
i=2 5'1'1 i=2 51—1 '.‘:&

That is

N B .
L[ [s(§:A)]2dE = inf  Jp(p)
i=2 Bi-1 peP

N B4 .
Jp= [p(&:A)12dE
i=2 Bi-1

Since a cubic spline s(§;A) is unique, a piecewise cubic Hermite polynomial
P(&;A) which minimizes the smoothing integral Jp in the above equation with
respect to AC becomes a cubic spline s({;A). To be more precise, we have the
following theorem.
THEOREM: Let P represent a set of piecewise cubic Hermite polynomials p
which satisfies the constraints below:
P(Bj:AC) = a5 , i =1,2,...N (12)
P(Bi;AC) = a'y , i = 1,N (13)
where p € C', A, and AC are the same as mentioned before. Then there exists a
unique cubic spline s(§) such that
N By N

t J [s(§)1*dE = Min L | [p(£,AC))2dE
i=2 Bi-1 AC =2 Bi-

where s and p are the second derivatives of functions s and p and s ¢ C*. A

simple example with N = 3 is given next.

Sde Boor, C., "Bicubid Spiine Interpolation,” J. Math Phys., Vol. 41, 1962,
pp. 212-218.
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EXAMPLE FOR C*®* CONTINUITY
For convenience and simplicity, we only consider a special case with N = 3,
The node points are given as B4, B2, and B3. The intervals are not equal, i.e.,
(B2-B1) # (B3-B2) (15)
Let a set of piecewise cubic Hermite polynomials p be
P = [p(t:AC) , p e C' [ty,t3], p(ty) = a, a € AC]
which satisfies the constraints in the equétions below:
p(t;;A€) = a; , for i =1,2,3
P(ti;AC) = a'; , for i = 1,3
In this special case, a set AC = a'; = a.
We want to show here that the cubic Hermite polynomial p(t;A€), which is
obtained by minimizing the smoothing integral, will become a cubic spline func-

tion s(t) € C2[tq,t3]

2 3

t
J* = Min {f
AC t

- R
[p(t:A2))2dt + [
t

, Ip(t;Ac))2dt)
2

t 2 . t
= Min {[  [p(t;a))?dt + [
a A3 t

3 .
, [p(t;a)]2dt] (18)
2
From Eq. (Al4) of the Appendix, the smoothing integral above can be written as
| -1

J(a) = (xp-Apxq)TBy (x2-A1x1) + (x3-Ax2)TBy (x3-Azx2) (19)

hall |
where A;, B; , and x; are defined in the Appendix, and

X; = (ai,a'i)T , with a's =za , i=1,2,3

8i-1 = dj-1 = ti-tj,

Using Eqs. (Al11) and (A12), the functional J(a) is written as
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